Matchgates and classical simulation of quantum circuits
نویسندگان
چکیده
Let G(A,B) denote the 2-qubit gate which acts as the 1-qubit SU(2) gates A and B in the even and odd parity subspaces respectively, of two qubits. Using a Clifford algebra formalism we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allowing the same gates to act only on n.n. and next-n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan-Wigner representation of a Clifford algebra, we show how one may generalise the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.
منابع مشابه
Jordan-Wigner formalism for arbitrary 2-input 2-output matchgates and their classical simulation
In Valiant’s matchgate theory, 2-input 2-output matchgates are 4 × 4 matrices that satisfy ten so-called matchgate identities. We prove that the set of all such matchgates (including non-unitary and non-invertible ones) coincides with the topological closure of the set of all matrices obtained as exponentials of linear combinations of the 2-qubit Jordan-Wigner (JW) operators and their quadratic...
متن کاملQuantum circuits and Spin(3n) groups
All quantum gates with one and two qubits may be described by elements of Spin groups due to isomorphisms Spin(3) ≃ SU (2) and Spin(6) ≃ SU (4). However, the group of n-qubit gates SU (2 n) for n > 2 has bigger dimension than Spin(3n). A quantum circuit with one-and two-qubit gates may be used for construction of arbitrary unitary transformation SU (2 n). Analogously, the 'Spin(3n) circuits' ar...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملMatchgate and space-bounded quantum computations are equivalent
Matchgates are an especially multiflorous class of two-qubit nearest neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions, and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unita...
متن کاملDesign and Test of New Robust QCA Sequential Circuits
One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008